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A method of constructing non-conical three-dimensional bodies of minimum drag is proposed assuming that the force of the 
medium acting on an element of the body surface depends only on the orientation of the element with respect to the direction 
of motion. For a specified base area and maximum permissible length of the body, the shape of these bodies is formed by 
combinations of parts of the surface of a circular cone and planes, the normal to which makes a certain optimum angle with the 
direction of motion. It is shown that the cross-section of the optimum body may be asymmetrical but the force acting on the 
body has no component in a plane perpendicular to the direction of motion. © 2000 Elsevier Science Ltd. All rights reserved. 

The problem of constructing the three-dimensional shape of a body of minimum drag for any drag law 
written within the framework of the model of local interaction for a specified base area and maximum 
permissible length of the body was solved in [1] without simplifying assumptions regarding the body 
geometry. It was shown that it has an infinite set of solutions. The bodies constructed were called 
absolutely optimum bodies, since they all have the same drag, which, for a specified base area, cannot 
be less. The shape of the absolutely optimum body is formed by combinations of parts of the surface 
of a circular cone and planes, the normal to which makes a certain optimum angle with the direction 
of motion. This angle is determined by the characteristics of the medium and the body velocity in terms 
of constants which occur in the drag law. Absolutely optimum bodies were constructed previously [1] 
with a conical longitudinal contour and it was shown that they can have both a symmetrical and an 
asymmetrical cross-section. 

Below, non-conical three-dimensional absolutely optimum bodies are constructed for a specified base 
area and maximum permissible length of the body, and the force characteristics of asymmetrical 
absolutely optimum bodies are investigated. 

1. P R O P E R T I E S  O F  T H E  O P T I M U M  S U R F A C E S  

Consider the motion of a body in a medium with constant velocity directed opposite to the direction 
of the Ox axis, in a ,Cartesian rectangular system of coordinates Oxyz. 

The force acting on the body can be written in the form 

F = q~ (ct, n+cx'r)dS (1.1) 
S 

Here q is the velocity head, Cp and c~ are the pressure coefficient and the coefficient of friction on the 
body surface, n and a- are unit vectors of the inward normal and the tangent to an element of the surface, 
and the vectors n, "r and x are coplanar 

"r = [ [nx  x l x  n] / I [n  x x]l (1.2) 

The integration in (1.1) is carried out over the surface S of contact between the medium and the 
body, for which 

ct = (nx) ~> 0, ('rx) = I~--'a-~ 2 (1.3) 
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Within the framework of the model of local interaction, each element of the body surface interacts 
with the medium independently of other parts of the surface, and the coefficients, Cp and c~ are functions 
of cx 

cp =cp(a) ,  c, =cx(a)  (1.4) 

In the general case, the body velocity and the characteristics of the medium, which are assumed 
constant, can occur in expression (1.4). 

Suppose the body possesses a piecewise-smooth surface S and condition (1.3) is satisfied at each point 
of the surface, apart from a finite number of lines of derivative discontinuity. The base area of the body 
Sb is assumed specified. It is related to S as follows: 

St, = ~J adS (1.5) 
$ 

We will write the drag of the body in the form 

Note that the body surface 

F n = (Fx) = q[S f(oOotdS (1.6) 
s 

f ( a )  = c o (a) + (cx (a) I a ) ~  

projects uniquely onto the plane of the base with the exception 
of parts with a = 0. Denoting the overall area of these parts by So, we can represent integral (1.6) 
in the form 

Fj = q( SS f (a)dSb + c,(O)So) 
Sb 

We considerf(a) as a function of the real variable a in the section [0, 1]. Suppose it reaches a minimum 
for a certain value of ~ = a*. Then, the following limit holds for the integral F 1 

F v >I Fo* = qSbf(O~ ° ) 

The equality here can only occur when a -- a*, when drag functional (1.6) reaches its absolute minimum 
F~. 

Hence, for a specified base area Sb one cannot obtain a drag less than F~. The bodies which have 
such a drag are those at each point of the surface of which the following condition is satisfied 

a = a* = const (1.7) 

As in [1] we will call such bodies absolutely optimum bodies. It was shown in [1] that if the body 
surface in a cylindrical system of coordinates (p, x, 0) with origin of coordinates x at the vertex of the 
body is given by the equation 

p = ¥(x, e) (1.8) 

the function ~(x, 0), which gives the shape of the absolutely optimum body, satisfies the following 
equation on the smooth parts of the surface 

"211~ * l* =Or* ~ x l [ l + ( ~ l o l ~ )  j = t ,  / ~ / I - a  .2 (1.9) 

When a* < 1 its solutions with ~x = t* and ~0 = 0 define surfaces of circular cones, in particular, a 
cone with the function +(x, 0) = t*x with origin of coordinates at its vertex. All the planes, tangential 
to this, also satisfy Eq. (1.9). The surface of a body consisting of  combinations of parts of this cone and 
planes tangential to it, is given by the function 

W(x, O) = cp(x)R(O) (1.10) 

where the continuous functions ~(x) and R(0) respectively define the longitudinal and transverse contours 
of the body. As follows from (1.9), in this case the longitudinal contour of the optimum surface is conical 
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9'(x)  = t, = eonst > 0 

and the function R(0) satisfies the equation 

R 2 I(R l + ~1~2) J~ = r~ = t* I t ,  ffi const 

(1.11) 

(1.12) 

Its solutions are two types of arcs: the arc of a circle with R(0) -= rk and sections of a straight line 
tangential to a circle of radius rk, with R(0) --- rk/cos (0 -- 01), where 01 is an integration constant. The 
transverse contour of the optimum body may contain sections of different straight lines with different 
01, continuously joining one another. This leads to the occurrence of lines of derivative discontinuity 
on the surface arLd may be the reason why the transverse contour of the optimum body will be 
asymmetrical. Condition (1.5) gives the rule for the joining of the sections of the straight lines, and for 
a body of length xj: with surface (1.8) can be written in the form 

2x 
J ¥2(x, ,  0)d0 = 2S b (1.13) 

According to this, the following conditions must be satisfied for the functions ~(x) and R(0) 

0(0 )  = 0, ~ x k )  = (Sb / n ) ~  (1.14) 

2g 

R(0) = R(21t), J Ra(O)d0 ffi 2~ (1.15) 
0 

The surface of the absolutely optimum body which satisfies relations (1.1), (1.15) is conical. As follows 
from conditions (1.12) and (1.15), the value rk ~ 1 and always tk >~ t*. This, in particular, indicates that 
a circular cone wit]axk = (Sb/'rr)l/2/t* has the greatest lengthxk in the class of conical absolutely optimum 
bodies. 

Examples of the transverse contours of conical absolutely optimum bodies projected onto the Oyz 
plane are shown in Fig. 1. Here contour 1 does not contain the arc of a circle, whereas arc AB of circle 
3 of radius rk belongs to contour 2. The straight lines, the sections of which are used to construct contours 
1 and 2, are tangential to it. For the same base areas Sb and longitudinal contour ~(x) -- t~  and 
tk = t*/rk, bodies with cross-sections 1 and 2 have the same drag F1, Note that they are asymmetrical 
about the horizontal plane Oxz. 

It was shown earlier [1] that bodies of different length and different transverse dimensions, which 
may change continuously, without changing the drag of the body, belong to a class of conical absolutely 
optimum bodies for a specified base area Sb. We will show that in the Class of absolutely optimum bodies 
one can construct an infinite setof non-conical bodies, the surface of which consists of parts of the surface 
of conical bodies which satisfy condition (1.7) and are continuously joined to one another. 

Y 

B 

Z 

Fig. 1. 
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2. THE C O N S T R U C T I O N  OF N O N - C O N I C A L  
A B S O L U T E L Y  O P T I M U M  BODIES 

We will write the relation for R(0) of a cyclically symmetrical ("star-shaped") conical absolutely 
optimum body, the transverse contour of which consists of N-similar symmetrical cycles. For known 
rk ~< 1 and any N t> 2 the transverse contour of such a body is completely defined by the function 
R(0) in a half-cycle in the section [0, w/N]. It can consist of two arcs, smoothly joined at the point 
0 = 00 

R(O)mrk, O~<O~<Oo (2.1) 

R(0) =rk/cos(O-- 01), 0o~<0~<Tr./N 

where the values of 00 and 01, taking conditions (1.15) into account, can be found from the 
relations 

( ; )  ,,'re r, 
tg(0 e - 0 j ) = c t g  - 0  e (n_NOoro2), r 0 = cos(00_01) 

Here r0 is the minimum value of R(0), where, without loss of generality, were assume that 
r o = R(O). If 

r k <~[(rclN)ltg(rtlN)] ½ (2.3) 

there is no arc of a circle in the transverse contour (00 = 0). If condition (2.3) is violated rk < 1, the 
contour contains both arcs (2.1). In this case 01 = 00 and r0 = rk. For known rk and N the values of 
r0, 00 and 01 are defined uniquely from relations (2.2). 

It was proved in [1] that if, when formulating the problem of the body of minimum drag, additional 
limitations are imposed on the length and number of cycles of the transverse contour of the required 
body, we can always choose a conical star-shaped absolutely optimum body which satisfies these and 
which will be the solution of the problem with these constraints. Using this property, for specified So, 
N and the maximum permissible length of the body L, we will construct a non-conical absolutely optimum 
body, whose surface consists of parts of a surface of two conical absolutely optimum bodies, joined 
continuously to one another. 

We will take as one of the bodies a circular cone, which, in the class of absolutely optimum bodies, 
has the greatest length x~. The surface of this cone is given by the function 

~gt(x, O) = t" x (2.4) 

Consider its cross-section for a certain x = Xl < min(L, x;). We will denote the radius of this cross- 
section, referred to (Sjw) 1/2, by R0 = xl/Xr. For specified So and N we will also construct a conical 
star-shaped absolutely optimum body of length x2 < Xl. Its longitudinal contour, by expressions (1.11) 
and (1.14), is defined by the function ~(x) = tkx, where tk = (Sb/w)l/2/x2, while the transverse contour 
consists of arcs of a circle of radius rk = x2/x*~ and sections of straight lines, that are tangent to it. The 
function of the transverse contour R(0) is given by relations (2.1). We will shift this body along the Ox 
axis, transferring its base to the point x = xl (see Fig. 2a). After this shift, the body surface is given by 
the function 

~2(x ,O)=tk(X-Xo)R(O)  (2.5) 

where Xo = x1 - -  X2, which obviously satisfies Eq. (1.9) and condition (1.13) when Xk = xv  The surface 
of this absolutely optimum body intersects the surface of circular cone (2.4) along certain three- 
dimensional curves. 

Consider a new body of length x I whose surface consists of combinations of parts of the surfaces of 
circular cone (2.4) and star-shaped absolutely optimum body (2.5). We will define its function 
0(x, 0) for any 0 E [0, 2w] as follows: 

¥(x, 0) = yj(x ,  0), O<~x<~xo 

¥(x, 0) = max (~¢m (x, 0), WE(X, 0)), 
(2.6) 



The optimum non-conical and asymmetrical three-dimensional configurations 587 

(a) 

0 

Y 

X2 

Xl 

'u) /1' 

Fig. 2 

This function, like qq(x, 0) and 0z(X, 0), is piecewise-smooth and over the whole region of definition, 
apart from a finite number of lines of derivative discontinuity, satisfies Eq. (1.9). It specifies the surface 
of the absolutely optimum body if, when xk = Xl, condition (1.13) is satisfied for it. 

Thus, if R0 ~< r0, where r0 is found from relations (2.2) for known rk and N, the required non-conical 
absolutely optimum body has been constructed. In this case, in the plane of the base for all 0 ~ [0, 2-rr] 
the function ~(Xl, 0) = ~2(X1, 0) and condition (1.13) is satisfied automatically. If R0 > r0, which is always 
true when condition (2.3) is violated, in particular, this will always be the case when N = 2, the body 
constructed has the base area which is greater than that specified. In this case, the body base has the 
form shown in Fig. 2(b). Its contour consists of combinations of arcs of circle 1 and sections of straight 
lines 2, which belong to surfaces 1 and 2 respectively of the conical absolutely optimum bodies shown 
in Fig. 2(a). The base area of this body, without violating optimality condition (1.7), can be reduced by 
increasing the angle 01, which is the integration constant of Eq. (1.12). For a fixed longitudinal contour 
(1.11) and retaining the value of r~, the solution of Eq. (1.12) with a new integration constant defines 
the function (2.5) which, as previously, will satisfy Eq. (1.9). The new value of 01 can be found from 
relations (2.2) if we replace r 0 byR0 in it. Then, 00 and 01 are determined uniquely from them and also, 
of course, the contour of the body base. In a half cycle in the section [0, ~/N] it will consist of two arcs 
which touch at the point 0 = 00 

R(O) -- Ro, 0 ~ < 0 ~ < 0 o  

R(0) = r jcos (0 - 0 0, 00 ~< 0 ~< •/N 

Since 00 and 01 were chosen from condition (1.13), the non-conical body constructed will belong to 
the class of absolutely optimum bodies, since the function (2.6), which specifies its surface, now satisfies 
conditions (1.9) and (1.13). As follows from the rule for constructing it, one can take any number of 
cycles N of the star-shaped absolutely optimum body, while the values of xl and x2 need only satisfy the 
condition: x2 < xl "--- min (L, x~). By changing them one can obtain non-conical absolutely optimum 
bodies, which, like conical bodies, will have a different length and different transverse dimensions. For 
an equal area of the base Sb they will all have the same drag F 1. 

In Fig. 2(a), as an example we show the shape of a non-conical absolutely optimum body for N = 2. 
In practice, this shape may turn out to be more preferably conical. Thus, for example, in aerodynamics 
it is called [2] an aerodynamically perfect body. In particular, one can assume that the motion of non- 
conical absolutely optimum bodies in the medium will be more stable than the motion of conical bodies, 
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since the centre of the pressure force acting on the body for small angles of attack is displaced backwards 
compared with conical absolutely optimum bodies. 

By combining parts of the surface of circular cone (2.4) and parts of the planes tangent to it, one 
can construct an absolutely optimum body which satisfies the most diverse practical requirements. These 
may be constraints on the transverse dimensions of the body and the requirement that its surface should 
pass through a specified contour of the base. 

Consider, for example, the problem of constructing a body of minimum drag, when, apart from Sb 
and L, one is given the shape of its base in the form of a circle. We will show that there is always a non- 
conical absolutely optimum body whose surface satisfies specified conditions. 

The surface of the required body will consist of parts of the surfaces of two conical bodies, one 
of which is the circular (2.4) of length x~. The second, a star-shaped body of length xk ~< min (L, x~) 
and consisting of N symmetrical cycles will be constructed in accordance with the following rule. 
We consider a cross-section of cone (2.4) at x = xg. We will denote its radius, referred to (Sb/-rr) 1/2, by 
r~ = Xk/X~ ~< 1. Depending on the value of rk we take the solution of Eq. (1.12) R(0) = rk/cos (0 - 01) 
with integration constant 01 = -arcos  (rk/ro), where r0 = R(0) can take any value from the condition 
r0/> 1. Using this solution for the function R(0) in the half-cycle in the section [0, ~r/N], we construct 
the star-shaped transverse contour of the body. It is possible to construct the contour if N > ~r/arcsin 
(rk/ro). We take it as the base contour of a conical body of length xk, the longitudinal contour of which 
q~(x) = ter, where t k = t*/rk. The function ~2(x, 0) = ~p(x)R(O) specifies its surface and satisfies Eq. (1.9) 
on the smooth parts. The body surface consists of parts of planes which touch the cone (2.4), and 
condition (1.7) is satisfied on these. The minimum radius of its base is ro(Sb/~r) 1/2. 

We shift the body along the O x  axis, transferring its base to the point x = x~ (see Fig. 3). The vertex 
of the body is shifted to the point x = x0 = (x~ - x~), while the circle of minimum radius of the base at 
r0 = 1 coincides with the contour of the base of cone (2.4). Here, as shown in Fig. 3, the surfaces of 
cone 1 and of the star-shaped body 2 intersect along certain three-dimensional curves. 

Consider a new body of length xg, whose surface when x E Ix0, x~] for each 0 e [0, 2~r] is defined by 
the function t~(x, 0) = min (~l(x, 0), t~2(x - x0, 0)). The optimality condition (1.7) is satisfied on the 
smooth parts of its surface, while the contour of the base is a circle of radius (Sb/~r) 1/2. The surface of 
this body satisfies all the specified conditions and, consequently, it is the required absolutely optimum 
body. An example of its shape for r0 = 1 is shown in Fig. 3 in the form of configuration 3. In the region 
of the vertex the surface of the body is given by the function ~2(x - x0, 0). This denotes that the spout 
of the body is star-shaped and on a section at the vertex of length Ax 1 = Xk(1 -- rk)/(r  f -- rk), where 
rf = rk/COS (~r/N - 01), its transverse contour consists solely of sections of straight lines. On moving 
away from the vertex, the transverse contour arcs of circles appear, belonging to cone 1. When r0 > 1 

-~k 

Fig. 3. 
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near the base on a section of length ,~c2 = xk(rO -- 1)/(r0 -- rg) the body will have an axisymmetrical 
part, belonging completely to the surface of cone (2.4). Taking into account the fact that, for specified 
Sb and L, there is arbitrariness in choosing the values OfXk, ro and N, then, by varying these, we obtain 
an infinite set of absolutely optimum bodies, the contour of the base of which is a circle. 

In practice, an absolutely optimum body with a circular base may be the head part of a specified length 
of a certain body of revolution. As is well known, when a body moves in dense media, such as soil and 
metal, the stresses acting on its surface often lead to the body deformation and fracture. The strength 
of an absolutely optimum body with a circular base is higher than that of conical absolutely optimum 
bodies of equivalent length and base area. Hence, for these media, when choosing the optimum 
configuration, such absolutely optimum bodies will be more preferable than conical. 

We have given alz,ove examples of non-conical absolutely optimum bodies constructed from two conical 
bodies, on the surface of which the optimality condition (1.7) is satisfied. In a similar way one can 
construct absolutely optimum bodies consisting of parts of surfaces of several bodies satisfying (1.7). 

The examples considered demonstrate the possibility of choosing the optimum configuration of the 
class of absolutely optimum bodies when quite different conditions are specified regarding the body 
geometry. These also include asymmetrical bodies. They can be conical, and their surface is then described 
by relations (1.10)-(1.15). The surfaces of the non-conical bodies can be made up of parts of the surfaces 
of asymmetrical absolutely optimum bodies, like parts of symmetrical bodies, in accordance with the 
rules described abcwe. For example, the shape of the absolutely optimum body shown in Fig. 2(a) can 
be made asymmetrical if when constructing it one uses a conical shape with transverse contour 1 or 2, 
shown in Fig. 1, as the second surface. Then, according to rule (2.6) for constructing a new surface in 
the plane of the b~tse of the body at x = xl the transverse contour of the absolutely optimum body, in 
addition to the parts of contours 1 or 2, will contain arcs of circle 4 (Fig. 1). Asymmetrical absolutely 
optimum bodies, like symmetrical bodies, for equal base areas Sb will all have the same drag F~. We will 
investigate their force characteristics in a plane perpendicular to the direction of motion. 

3. THE FORCE C H A R A C T E R I S T I C S  OF A S Y M M E T R I C A L  
ABSOLUTELY OPT IMUM BODIES 

We will show that within the framework of the local-interaction model, when a body moves along the 
Ox axis, on the suzface of which conditions (1.3) and (1.7) are satisfied, irrespective of the shape of 
the cross-section and the form of functions (1.4), the force acting on the body has no component in 
the Oyz plane. 

We will assume that this is not so and that the force (1.1) in the Oyz plane has a non-zero component 
directed along a certain unit vector e. Then 

F= Fix + F2e (3.1) 

Using expressio:as (1.2) and (1.3), we will write expansions of the vectors n and "r in the x, y, z basis 
in the form 

n = cxx + nyy + n,z, "r = fSx - t(nyy + nzz) 

[3=~/I-ot 2, t = o ~ l ~  

Here and henceforth the asterisk on a is omitted. 
Since (xe) = 0, iit follows that 

(-re) = -t(ne) (3.2) 

Consider the component F2 in representation (3.1). Taking relations (1.1), (1.7) and (3.2) into account 
we can write the expression for this component in the form 

F 2 = (Fe) = q(cp(ec)- tc~(ec))SS. (ne)dS 
S 

Since (ne) = 0 on the perpendicular axis Ox of the body base, in the latter expression the integral 
over the "windward" part of the body S can be replaced by an integral over its whole surface. Applying 
Gauss' formula to this and taking into account the constancy of the vector e, we obtain that this integral, 
and together with it the component of the force F2, are equal to zero. 
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Hence, if the body possesses a piecewise-smooth surface, on which conditions (1.3) are satisfied, while 
ot is a constant, within the framework of the local-interaction model, irrespective of the form of functions 
(1.4), the force acting on the body when it moves along the O x  axis, has no component in a plane 
perpendicular to the direction of motion. The result obtained is independent of the specific value of 
a. This denotes, in particular, that bodies with any conical longitudinal contour, the transverse sections 
1 and 2 of which are shown in Fig. 1, when moving along the O x  axis experience no lifting and lateral 
forces. 

4. C O N C L U S I O N  

For a specified length and base area of the body, using optimality condition (1.7) we have developed 
a method of constructing three-dimensional shapes of minimum drag, which enables optimum bodies 
of various configuration to be constructed, including non-conical an asymmetrical bodies. It is based 
on a continuous joining of parts of the surface of several conical bodies, which satisfy condition (1.7). 
A method of constructing conical bodies when different conditions are imposed On their geometry is 
known [1], and their surface consists of parts of the surface of a circular cone with aperture angle 
13 = 2 arcsin (a*) and planes touching it. As a result, the surface of the new body consists of these parts, 
but it can be non-conical and asymmetrical. All the bodies constructed have the same drag F~, and a 
smaller value of this cannot be obtained for a specified base area. As previously [1], such bodies are 
called absolutely optimum bodies. We have proved that the force acting on the optimum body, even 
when it has no symmetry, has no component in a plane perpendicular to the direction of motion. We 
have considered examples of the construction of bodies of minimum drag, which demonstrate the 
possibilities of the procedure for obtaining optimum shapes, when additional constraints are imposed 
on the body geometry. We have shown that it can be used to construct absolutely optimum bodies of 
specified length when the shape of the base is given in the form of a circle. 

At first glance, solutions extremely close to those obtained above were obtained earlier in [3, 4]. 
Assuming that the pressure is given by Newton's formula and the friction is constant [3] or nonexistent 
[4], sought a body surface of minimum drag x = x(y, z), passing through a specified base contour was. 
When there is no friction [4] (see also [5]) it was assumed that the area of the body surface S is bounded 
by a certain constant surface S*. For an arbitrary body length, a condition for the optimum surface was 
obtained in [3, 5] similar to the optimality condition (1.7). It was given in the form of a partial differential 
equation 

2 + x 2 = eonst (4.1) xy 

- -  211/2 Since c~ = 1/[1 + x 2 . Xz] , Eq. (4.1) is equivalent to the condition that o~ in (1.7) should be constant 
(4.1). when calculating the constant in (4.1) the following expressions were obtained (in the notation 

, 2  , 2 used in the present paper): ( 1 # )  [3] and ((S /Sb)  - 1) [4, 5]. Despite this, the results obtained above, 
and also in [1], on the one hand, and the results obtained in [3-5] on the other, differ in principle. 

The require integral surface [4, 5] of Eq. (4.1) was constructed as a surface of constant slope, and 
the optimum surface in [3] is given in parametric form as the solution of Eq. (4.1), obtained by the 
standard method of characteristic strips [6]. When integrating Eq. (4.1) to obtain the closed surface of 
the body passing through a specified base contour, this method can be used for a piecewise-smooth 
contour, hut only if the internal angle at which the arcs meet at points of derivative discontinuity are 
less than 180 ° . Otherwise, the characteristic strips diverge and no closed surface is obtained. It can be 
closed by using the surface of the characteristic conoid with vertex at the derivative discontinuity point, 
which, for Eq. (4.1), is a circular cone with 13 = 2 arcsin (a*), but the length of the body in this case 
may be much greater than the permissible value. 

Comparing the solutions obtained above with the solution proposed in [3], we note that, using the 
latter, one can construct conical star-shaped absolutely optimum bodies if the contour of their base is 
convex. However, if the contour of the base of the absolutely optimum body is concave, as, for example, 
for bodies the transverse contours of which are shown in Figs 1 and 2, or like the star-shaped absolutely 
optimum bodies [1] when condition (2.3) is satisfied in the form of a strict inequality, one cannot construct 
a conical absolutely optimum body by the method which was used in [3]. 

The difference in the solutions can be most clearly seen when constructing the optimum body having 
a base in the form of a circle. In this case the method o f  characteristic strips enables Eq. (4.1) to be 
integrated and a unique solution can be obtained [7]. This is the surface of a circular cone with an angle 
at the vertex of 13 = 2 arcsin (or*). The construction of the optimum surface, like the surfaces of constant 
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slope [4, 5], gives the same result in this case with or* = Sb/S*. However, as was shown above, in the 
class of piecewise-smooth functions x = x(y, z) an infinite set of solutions exists which define the body 
surface, on the smooth parts of which condition (4.1) is satisfied. An example of such a surface is given 
in Fig. 3 as the shape 3. 

Hence, we have shown that the majority of solutions of the problem of the shape of the body of 
minimum drag, obtained above and previously [1], cannot be constructed by the method of characteristic 
strips [6, 7], which was used in [3], or as a constant-slope surface [4, 5]. On can obtain them thanks to 
the singular properties of Eq. (4.1), for which a circular cone with an angle at the vertex 13 = 2 arcsin 
(or*) and an axis directed along Ox is a characteristic conoid. All the planes which touch it are integral 
surfaces of Eq. (4.1), and this enables one to use parts of them to construct optimum bodies. This 
property of a cone and planes was the basis of the method of obtaining absolutely optimum bodies above. 

The results of theoretical and experimental research on reducing the drag of multiwedge and pyramidal 
bodies, among which there are shapes whose structure is close to absolutely optimum bodies, and a 
review of which is given in [8] for various media, confirm the advisability of changing to such shapes 
for velocities of motion of the body in a medium of the order of 102-103 rn/s. However, it should be 
noted that the cortclusion in [8] that numerical methods have the prerogative in solving the problem 
of the three-dimensional shape of a body of minimum drag within the framework of local theories and 
that it can only be obtained by narrowing the class of permissible surfaces is refuted by the results of 
this paper. For spe, cified lengths and base areas of the body the procedure for obtaining the absolutely 
optimum bodies enables three-dimensional configurations of minimum drag to be constructed in the 
class of piecewise-smooth surfaces without using numerical methods. 

In conclusion we note that the optimization of the shape of the body and the calculation of the force 
characteristics were presented above within the framework of the local interaction model, which ignores 
secondary collisions between the particles of the medium and the body and their interaction with one 
another after reflection from the body surface. However, these collisions and interactions will always 
occur if the body surface has lines of derivative discontinuity. In this case, an additional investigation 
of the force characteristics of the bodies is required based on experiment and a more rigorous theory 
[2]. 
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